41 research outputs found

    Analiza dizajna LCLC rezonantnog invertera za dvostupanjsko dvofazno napajanje

    Get PDF
    This paper deals with the design analysis and synthesis of power resonant inverter with sinusoidal output voltage for sensitive loads. The proposed filter must be capable of removing higher harmonic components from the supplying voltage to reach a harmonic distortion of roughly 5% in the whole range of the load (0 − 100%). The inverter can be supplied from either single-phase voltage inverter in full- or half- bridge connection, or from simple DC/DC buck converter. Non-symmetrical control causes higher harmonic content, both odd and even. Simulation and experimental results based on designed parameters and subsequently obtained from Matlab and OrCad models confirm good quality of output quantities, voltage and current.Tema je ovog članka analiza dizajna i sinteza učinskog rezonantnog invertera sa sinisuidalnim izlaznim naponom za osjetljive terete. Predloženi filtar mora moći filtrirati više harmonike ulaznog napona kako bi distorzija harmonika bila oko 5% u čitavom radnom području (0−100%). Inverter se može napajati ili iz jednofaznog naponskog invertera u mosnom ili uzrokuje pojavu viših harmonika u signalu, kako parnih tako i neparnih. Simulacijski i eksperimentalni rezultati temeljeni na sintetiziranim parametrima dobivenim od modela napravljenih u programskim paketima Matlab i OrCad potvr.uju dobru kvalitetu izlaznih veličina napona i struje

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Упорство бактерий в ходе развития мух

    No full text

    Investigation of Flyback Transformer Flux Leakage Reduction Ways

    No full text

    Lasers in the Conservation fo Artworks VIII

    No full text
    Lasers in the Conservation fo Artworks VII
    corecore